
GAMMA Pulse Waveform 34
Pulse Sequences Overview 3.1
3 Pulse Waveform

3.1 Overview

The class PulWaveform embodies a pulse waveform in NMR simulations. The class maintains the
pulse waveform as a discrete function whose individual points (waveform steps) consist of three
values, , the rf-field strength, the rf-field phase, and the time the rf-field is applied.

This class works with other GAMMA classes for handling shaped pulses, composite pulses, &
pulse cycles.

Waveform in GAMMA Pulse Hierarchy

Figure 3-1 A waveform (e.g. composite 180) is just a list of pulse steps, each step having a specified
rf-field strength, rf-field phase, and length (e.g. shown in kHz and msec). The waveform is used to
produce a shaped or composite pulse which can be used as a step in an NMR pulse sequence. In
turn, the composite pulse can be used to form a pulse cycle (repeated pulses with phase changes,
e.g. MLEV-4) which may also be used during NMR simulations. This hierarchy continues to acco-
modate supercycles and cycles with interdispersed pulses.

3.2 Chapter Contents

3.2.1 Pulse Waveform Functions

Construction & Assignment

PulWaveform - Construction page 3-36
= - Assignment page 3-36

Access Functions

steps - Number of waveform steps page 3-38
name - Waveform name page 3-38
values - Waveform step values (γB1, φ) page 3-39
lengths - Waveform step values (t) page 3-39

γB1 φ tp, ,{ }

Waveform Composite/Shaped Pulse Pulse Cycle

step γB1 φ time

1 2.5 0 0.1

2 2.5 90 0.2

3 2.5 0 0.1
Scott Smith March 16, 1998

GAMMA Pulse Waveform 35
Pulse Sequences Chapter Contents 3.2
value - Waveform step value (γB1, φ) page 3-40
phase - Waveform step phase page 3-40
strength - Waveform step strength page 3-40
length - Waveform, waveform step length page 3-41

Auxiliary Functions

maxlength - Length of largest waveform step page 3-42
minlength - Length of shortest non-zero waveform step page 3-42
gamB1const - Test waveform field strength variation page 3-42
phaseconst - Test waveform phase variation page 3-43
timeconst - Test waveform step length variation page 3-43
WFs - Waveform counter page 3-43
fullWFs - Full waveform name page 3-44
steps - Waveform step counter page 3-38
fullsteps - Waveform full step counter page 3-44
sumlength - Waveform step length sum page 3-44

Plotting Functions

GP - Plot waveform using Gnuplot page 3-46
FM - Plot waveform to MIF file page 3-46

Input/Output Functions

printBase - Print basic wavform information page 3-48
printSteps - Print waveform step information page 3-48
print - Waveform name page 3-48
<< - Waveform name page 3-49

3.2.2 Pulse Waveform Sections

Overview page 3-34
Construction & Assignment page 3-36
Access Functions page 3-38
Input/Output Functions page 3-48
Auxiliary Functions page 3-42
Description page 3-50
Chapter Source Codes page 3-55

3.2.3 Pulse Waveform Figures & Tables

Gaussian Waveform- page 3-50
Basic GARP 25 Step Sequence- page 3-51
Scott Smith March 16, 1998

GAMMA Pulse Waveform 36
Pulse Sequences Chapter Contents 3.2

.

re-
 vec-

tion
3.3 Construction & Assignment

3.3.1 PulWaveform

Usage:

#include <PulWaveform.h>
PulWaveform()
PulWaveform(row_vector& wfsteps, row_vector& wftimes, const String& wfname, int wfrad=0)
PulWaveform(const PulWaveform& PWF)

Description:

The function PulWaveform is used to create a pulse waveform in GAMMA.

1. PulWaveform() - Creates an “empty” NULL pulse waveform. Can be later filled by an assignment

2. PulWaveform(row_vector& wfsteps, row_vector& wftimes, const String& wfname, int wfrad=0) - C
ates a new waveform named wfname whose step rf-amplitudes and phase are contained in the input
tor wfsteps and whose step lengths are in the vector wftimes. The flag wfrad indicates whether the input
phases are in degrees (default) or radians.

3. PulWaveform(const PulWaveform& PWF) - Called with another pulse waveform quantity this func
constructs an identical waveform equal to the input PWF.

Return Value:

PulWaveform returns no parameters. It is used strictly to create an pulse waveform.

Examples:

#include <PulWaveform.h>

PulWaveform PWF; // Empty pulse waveform.

int nsteps = 100;

row_vector gB1s = Lorentzian(

row_vector times(nsteps, 0.001);

PWF1(gB1s, times, “new”); // Here is a mock Lorentzian pulse waveform

PulWaveform PWF2(PWF1); // An identical copy of PWF1

See Also: =

3.3.2 =

Usage:

#include <PulWaveform.h>
void PulWaveform operator = (PulWaveform &PWF)

Description:

The unary operator = (the assignment operator) allows for the setting of one pulse waveform equal to another
pulse waveform. The waveform being assigned to will be overwritten by PWF.
Scott Smith March 16, 1998

GAMMA Pulse Waveform 37
Pulse Sequences Chapter Contents 3.2
Return Value:

None, the function is void

Examples:

#include <PulWaveform.h>

#include <PulWALTZ.h>

PulWaveform PWF; // Empty pulse waveform.

PWF = WF_WALTZQ(875.0); // Set PWF to WALTZ-Q waveform @ 875 Hz

See Also: PulWaveform
Scott Smith March 16, 1998

GAMMA Pulse Waveform 38
Pulse Sequences Chapter Contents 3.2

0)
3.4 Access Functions

3.4.1 steps

Usage:

#include <PulWaveform.h>
int PulWaveform::steps()
double PulWaveform::steps(double td)

Description:

The function steps with no arguments returns the number of individual steps defined in the pulse waveform.
Of a length td is given, the function returns the number of steps that will span the length specified.

Return Value:

The function returns either an integer or a double.

Example:

#include <PulWaveform.h>

#include <PulMLEV.h>

MLEV MP(1260.0, “1H”); // Set up MLEV parameters

PulWaveform PWF = MP.WF(); // Set default MLEV waveform (comp. 18

cout << “\nMLEV Waveform has “ // Output the number of steps

<< PWF.steps() << “ steps.”;

double td = 0.03; // Set a delay time

cout << “\nTo span “ << td << “ seconds “ // Output waveforms spanning delay

 << “requires “ << PWF.steps(td)

<< “ waveforms”;

See Also:

3.4.2 name

Usage:

#include <PulWaveform.h>
String PulWaveform::name()

Description:

The function name returns the name of the pulse waveform.

Return Value:

The function returns a string.
Scott Smith March 16, 1998

GAMMA Pulse Waveform 39
Pulse Sequences Chapter Contents 3.2
Example:

#include <PulWaveform.h>

#include <PulGARP.h>

GARP GP(1260.0, “1H”); // Set up GARP parameters

PulWaveform PWF = GP.WF(); // Set default GARP waveform (25 steps)

cout << “\nWorking with “ << PWF.name() // Output the waveform name

<< “ waveform.”;

3.4.3 values

Usage:

#include <PulWaveform.h>
row_vector PulWaveform::values()

Description:

The function values returns a row_vector containing values which define the pulse waveform steps. The ith

vector value contains the values {γB1, φ}, where the real component is the rf-field strength in Hz, and the
imaginary component is the rf-phase in degrees (or radians).

Return Value:

The function returns a row vector.

Example:

#include <PulWaveform.h>

#include <PulGARP.h>

GARP GP(1260.0, “1H”); // Set up GARP parameters

PulWaveform PWF = GP.WF(); // Set default GARP waveform (25 steps)

row_vector vals = PWF.values(); // Get array of strengths and phases

See Also:

3.4.4 lengths

Usage:

#include <PulWaveform.h>
row_vector PulWaveform::lengths()

Description:

The function lengths returns a row_vector containing values which define the pulse waveform step lengths.
The real part of the ith vector value contains the length os step i in seconds.

Return Value:

The function returns a row vector.
Scott Smith March 16, 1998

GAMMA Pulse Waveform 40
Pulse Sequences Chapter Contents 3.2
Example:

#include <PulWaveform.h>

#include <PulGARP.h>

GARP GP(1260.0, “1H”); // Set up GARP parameters

PulWaveform PWF = GP.WF(); // Set default GARP waveform (25 steps)

row_vector ts = PWF.lengths(); // Get array of lengths

See Also:

3.4.5 value

Usage:

#include <PulWaveform.h>
complex PulWaveform::value(int i)

Description:

The function value returns a compex number for the values which define the pulse waveform step i. The value

contains the number {γB1, φ}, where the real component is the rf-field strength in Hz, and the imaginary com-

ponent is the rf-phase in degrees (or radians).

Return Value:

The function returns a complex number.

Example:

#include <PulWaveform.h>

See Also:

3.4.6 phase

Usage:

#include <PulWaveform.h>
double PulWaveform::phase(int i)

Description:

The function phase returns the value of the rf-field phase at pulse waveform step i in degrees (or radians).

Return Value:

The function returns a double.

3.4.7 strength

Usage:

#include <PulWaveform.h>
double PulWaveform::strength(int i)
Scott Smith March 16, 1998

GAMMA Pulse Waveform 41
Pulse Sequences Chapter Contents 3.2
Description:

The function strength returns the value of the rf-field amplitude at pulse waveform step i in Hz.

Return Value:

The function returns a double.

Example:

#include <PulWaveform.h>

See Also:

3.4.8 length

Usage:

#include <PulWaveform.h>
double PulWaveform::length(int i)

Description:

The function length returns the length of th pulse waveform in seconds.

Return Value:

The function returns a double.

Example:

#include <PulWaveform.h>

See Also:
Scott Smith March 16, 1998

GAMMA Pulse Waveform 42
Pulse Sequences Chapter Contents 3.2
3.5 Auxiliary Functions

3.5.1 maxlength

Usage:

#include <PulWaveform.h>
double PulWaveform::maxlength()

Description:

The function maxlength returns the length of the longest waveform step.

Return Value:

The function returns a double.

Example:

#include <PulWaveform.h>

See Also:

3.5.2 minlength

Usage:

#include <PulWaveform.h>
double PulWaveform::maxlength(double cutoff=1.e-13)

Description:

The function minlength returns the length of the shortest non-zero waveform step. The step is considered to
be of zero length if it falls below the value set by cutoff.

Return Value:

The function returns a double.

Example:

#include <PulWaveform.h>

See Also:

3.5.3 gamB1const

Usage:

#include <PulWaveform.h>
int PulWaveform::gamB1const()

Description:

The function gamB1const returns true if all steps in the waveform have the same rf-field strength.
Scott Smith March 16, 1998

GAMMA Pulse Waveform 43
Pulse Sequences Chapter Contents 3.2
Return Value:

The function returns an integer.

Example:

#include <PulWaveform.h>

See Also: phaseconst, timeconst

3.5.4 phaseconst

Usage:

#include <PulWaveform.h>
int PulWaveform::phaseconst()

Description:

The function phaseconst returns true if all steps in the waveform have the same rf-field phase.

Return Value:

The function returns a string.

Example:

See Also: timeconst, gamB1const

3.5.5 timeconst

Usage:

#include <PulWaveform.h>
int PulWaveform::timeconst()

Description:

The function timeconst returns true if all steps in the waveform have the same length.

Return Value:

The function returns a row vector.

Example:

#include <PulWaveform.h>

See Also: phaseconst, gamB1const

3.5.6 WFs

Usage:

#include <PulWaveform.h>
double PulWaveform::WFs(double td)
Scott Smith March 16, 1998

GAMMA Pulse Waveform 44
Pulse Sequences Chapter Contents 3.2
Description:

The function WFs returns the number of pulse waveforms needed to span the length td.

Return Value:

The function returns a double.

Example:

#include <PulWaveform.h>

See Also:

3.5.7 fullWFs

Usage:

#include <PulWaveform.h>
int PulWaveform::fullWFs(double td)

Description:

The function fullWFs returns the number of complete pulse waveforms that fit within the time span td.

Return Value:

The function returns an integer.

Example:

#include <PulWaveform.h>

See Also:

3.5.8 fullsteps

Usage:

#include <PulWaveform.h>
int PulWaveform::fullsteps(double td)

Description:

The function fullsteps returns the number of complete pulse waveform steps that fit within the time span td.

Return Value:

The function returns an integer.

Example:

#include <PulWaveform.h>

3.5.9 sumlength
Scott Smith March 16, 1998

GAMMA Pulse Waveform 45
Pulse Sequences Chapter Contents 3.2
Usage:

#include <PulWaveform.h>
double PulWaveform::sumlength(int i)

Description:

The function sumlength returns the summed length over the first i steps of the waveform.

Return Value:

The function returns a double.

Example:

#include <PulWaveform.h>
Scott Smith March 16, 1998

GAMMA Pulse Waveform 46
Pulse Sequences Chapter Contents 3.2

0)

0)
3.6 Plotting Functions

3.6.1 GP
Usage:

#include <PulWaveform.h>
void PulWaveform::GP(int type=0, int split=0, int ends=0, int N=1)

Description:

The function GP will produce a plot of the waveform on screen using the Gnuplot program if available. The func-
tion will plot either the rf-intensity versus time (type = 1) or the rf-phase versus time (type = 0). Individual wave-
forms steps will be separated by split multiples of one tenth the first waveform step length. Ends will be drawn on
the plot of length ends*length of first pulse step. There will be N waveforms plotted.

Return Value:

Void. Aplot is produced on screen if Gnuplot is available.

Example:

#include <PulWaveform.h>

#include <PulMLEV.h>

MLEV MP(1260.0, “1H”); // Set up MLEV parameters

PulWaveform PWF = MP.WF(); // Set default MLEV waveform (comp. 18

PWF.GP(1, 1, 1); // Make strength vs. time plot

See Also: FM

3.6.2 FM
Usage:

#include <PulWaveform.h>
void PulWaveform::FM(int type=0, int split=0, int ends=0, int N=1)

Description:

The function FM will produce a plot of the waveform in FrameMaker MIF format. The function will plot either
the rf-intensity versus time (type = 1) or the rf-phase versus time (type = 0). Individual waveforms steps will be
separated by split multiples of one tenth the first waveform step length. Ends will be drawn on the plot of length
ends*length of first pulse step. There will be N waveforms plotted. The output filename will reflect the name of
the waveform, the type plotted, and have a mif suffix.

Return Value:

Example:

#include <PulWaveform.h>

#include <PulMLEV.h>

MLEV MP(1260.0, “1H”); // Set up MLEV parameters

PulWaveform PWF = MP.WF(); // Set default MLEV waveform (comp. 18
Scott Smith March 16, 1998

GAMMA Pulse Waveform 47
Pulse Sequences Chapter Contents 3.2
PWF.FM(1, 1, 1); // Make strength vs. time plot

See Also: GP
Scott Smith March 16, 1998

GAMMA Pulse Waveform 48
Pulse Sequences Chapter Contents 3.2
3.7 Input/Output Functions

3.7.1 printBase
Usage:

#include <PulWaveform.h>
ostr PulWaveform::printBase(ostream& ostr)

Description:

The function printBase will put basic information regarding the waveform into the output stream ostr given as an
input argument

Return Value:

The function modifies the output stream and returns it.

Example:

#include <PulWaveform.h>

See Also:

3.7.2 printSteps
Usage:

#include <PulWaveform.h>
ostr PulWaveform::printSteps(ostream& ostr)

Description:

The function printSteps will put information regarding the pulse cycle individual step phases into the output
stream ostr given as an input argument.

Return Value:

The function modifies the output stream and returns it.

Example:

#include <PulWaveform.h>

See Also:

3.7.3 print

Usage:

#include <PulWaveform.h>
ostr PulWaveform::print(ostream& ostr, int full=0)

Description:

The function print will put information regarding the pulse waveform into the output stream ostr given as an
input argument. If the optional flag full has been set to non-zero, information regarding individual pulse
waveform steps will also be added (which can be a lot data) added to the output stream.
Scott Smith March 16, 1998

GAMMA Pulse Waveform 49
Pulse Sequences Chapter Contents 3.2
Return Value:

The function modifies the output stream and returns it.

Example:

#include <PulWaveform.h>

See Also:

3.7.4 <<

Usage:

#include <PulWaveform.h>
ostream& operator << (ostream& ostr, PulWaveform& PWF)

Description:

The operator << adds the pulse waveform specified as an argument PWF to the output stream ostr.

Return Value:

None.

Example(s):

#include <PulWaveform.h>

See Also:
Scott Smith March 16, 1998

GAMMA Pulse Waveform 50
Pulse Sequences Chapter Contents 3.2
3.8 Description

3.8.1 Introduction

Class PulWaveform is designed to faclitate the use of generic shaped pulses, composite pulses, and
pulse trains in GAMMA. There are a wide variety of such waveforms commonly used in modern
NMR spectroscopy. In GAMMA, as in an NMR experiment, we should like to use pulses and pulse
trains generated from arbitrary waveforms as individual steps in a general pulse sequence. This in-
cludes use in variable delays as part of multi-dimensional experiements and/or use in continuous
pulse trains during acquisition steps.

3.8.2 Pulse Waveform Basis

We consider a pulse waveform as involving four basic features: 1.) The # steps, 2.) The rf-field
strength of each step, the rf-phase of each step, the length of each step: N, . One ex-

ample would be a Gaussian pulse waveform. In this case the Gaussian function is broken up into
N steps each having the same phase and length but with varying field strength.

Gaussian Waveform

Figure 3-2 A Gaussian waveform in GAMMA. Each step here has the same length and phase
whereas the rf intensity changes according the the Gaussian function.This figure was made by the
program GaussWF.cc on page 55 of this chapter.

A Gaussian pulse waveform, such as shown above, simply maintains the steps and rf-amplitudes,
in this case the step length is constant. As an alternative example, the we can consider a GARP-1
25-step composite pulse as our waveform. In this case the rf-field strength is maintained constant
whereas the phase and length of the steps (individual pulses) change.

γB1 φ tp, ,{ }
Scott Smith March 16, 1998

GAMMA Pulse Waveform 51
Pulse Sequences Chapter Contents 3.2
Basic GARP 25 Step Sequence

Figure 3-3 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with
a 180 degree phase shift, as indicate by a bar in the table listing. The program which produced this
plot can be found at the end of this chapter, GarpWF0.cc on page 55.

See the DANTE module for an example of a waveform with pulse and delay steps mixed and the
CHIRP module should contain a nice example of a constantly changing (phase and intensity) wave-
form.

3.8.3 Pulse Waveform Construction

The examples in the previous section generated and plotted waveforms which are supplied through
pre-existing functions available in GAMMA. Users are free to look through the source code of the
individual modules containing the function(s) to see exactly how they were generated. In this sec-
tion it is shown explicitly how you can build your own pulse waveforms.

Building a waveform requires two arrays (row-vectors) that have length equal to the intended
waveform steps. The first vector will contain the rf strengths and phases and the second will contain
the step lengths. An optional name can be associated with the waveform too. Let us just make the
basic GARP 25-step waveform given in a previous figure. First, here is how to make the vector of
amplitudes and phase:

row_vector WFsteps(25); // Vector for waveform
double gamB1 = 2000; // Field strength to 2 kHz
double phi = 0.0; // Base phase
double phibar = phi + 180.0; // Alternate phase

 WFsteps.put(complex(gamB1,phi), 0); // Set waveform values
 WFsteps.put(complex(gamB1,phibar), 1); // { gamB1, phi }
 WFsteps.put(complex(gamB1,phi), 2);
 WFsteps.put(complex(gamB1,phibar), 3);
 WFsteps.put(complex(gamB1,phi), 4);
 WFsteps.put(complex(gamB1,phibar), 5);
 WFsteps.put(complex(gamB1,phi), 6);
 WFsteps.put(complex(gamB1,phibar), 7);
 WFsteps.put(complex(gamB1,phi), 8);
 WFsteps.put(complex(gamB1,phibar), 9);
 WFsteps.put(complex(gamB1,phi), 10);

Step Angle Step Angle Step Angle

1 30.5 9 134.5 17 258.4

2 55.2 10 256.1 18 64.9

3 257.8 11 66.4 19 70.9

4 268.3 12 45.9 20 77.2

5 69.3 13 25.5 21 98.2

6 62.2 14 72.7 22 133.6

7 85.0 15 119.5 23 255.9

8 91.8 16 138.2 24 65.6

25 53.4
Scott Smith March 16, 1998

GAMMA Pulse Waveform 52
Pulse Sequences Chapter Contents 3.2

’t do

r lev-
equired

e fol-
 WFsteps.put(complex(gamB1,phibar),11);
 WFsteps.put(complex(gamB1,phi), 12);
 WFsteps.put(complex(gamB1,phibar),13);
 WFsteps.put(complex(gamB1,phi), 14);
 WFsteps.put(complex(gamB1,phibar),15);
 WFsteps.put(complex(gamB1,phi), 16);
 WFsteps.put(complex(gamB1,phibar),17);
 WFsteps.put(complex(gamB1,phi), 18);
 WFsteps.put(complex(gamB1,phibar),19);
 WFsteps.put(complex(gamB1,phi), 20);
 WFsteps.put(complex(gamB1,phibar),21);
 WFsteps.put(complex(gamB1,phi), 22);
 WFsteps.put(complex(gamB1,phibar),23);
 WFsteps.put(complex(gamB1,phi), 24);

Next we make a vector of step (pulse) lengths. These will be adjusted to produce the proper pulse
angles for GARP:

row_vector WFtimes(25); // Vector for step times
 double tdegree = 0; // Increment time per pulse
 if(gamB1>0) tdegree = 1/(gamB1*360); // degree
 WFtimes.put(30.5*tdegree, 0);
 WFtimes.put(55.2*tdegree, 1);
 WFtimes.put(257.8*tdegree, 2);
 WFtimes.put(268.3*tdegree, 3);
 WFtimes.put(69.3*tdegree, 4);
 WFtimes.put(62.2*tdegree, 5);
 WFtimes.put(85.0*tdegree, 6);
 WFtimes.put(91.8*tdegree, 7);
 WFtimes.put(134.5*tdegree, 8);
 WFtimes.put(256.1*tdegree, 9);
 WFtimes.put(66.4*tdegree, 10);
 WFtimes.put(45.9*tdegree, 11);
 WFtimes.put(25.5*tdegree, 12);
 WFtimes.put(72.7*tdegree, 13);
 WFtimes.put(119.5*tdegree, 14);
 WFtimes.put(138.2*tdegree, 15);
 WFtimes.put(258.4*tdegree, 16);
 WFtimes.put(64.9*tdegree, 17);
 WFtimes.put(70.9*tdegree, 18);
 WFtimes.put(77.2*tdegree, 19);
 WFtimes.put(98.2*tdegree, 20);
 WFtimes.put(133.6*tdegree, 21);
 WFtimes.put(255.9*tdegree, 22);
 WFtimes.put(65.6*tdegree, 23);
 WFtimes.put(53.4*tdegree, 24);

Now we can make our waveform:

PulWaveform GWF(WFsteps, WFtimes, “GARP-1”);

Now that we have a waveform we can make composite pulses and pulse cycles which can be used
as single steps, mixing steps, or during acquisition steps during NMR simulations. Remember, the
waveform itself is just a container for shaped/composite pulse information. In itself it doesn
any calculations.

3.8.4 Pulse Waveform Utility

In GAMMA, pulse waveforms have little functionality. The class exists largely to serve highe
el pulse entities such as composite pulses and pulse cycle. In effect, one builds the pulses r
in NMR simulations from pulse waveforms. To illustrate this, consider a simulation in which
CHIRP decoupling is desired during acquisitions. The basic CHIRP waveform is shown in th
lowing figure.
Scott Smith March 16, 1998

GAMMA Pulse Waveform 53
Pulse Sequences Chapter Contents 3.2

n into
Typical Chirp Sequence Amplitude and Phase

Figure 3-4 The rf amplitude and phase for a typical Chirp. The amplitide is kept constant at 4.2 kHz
(scaled down by 1000 to fit on the plot) and ploted in blue. The phase is shown plotted in green and

expressed in units of radians. The phase range is shown within the limits . The pro-
gram which produced the plot can be found in the GAMMA CHIRP documentation.

The previous section detailed how one might produce the above CHIRP waveform in GAMMA.
To actually use a pulse based on this waveform demands more information than what is contained
in the waveform itself. The computation must have knowledge of the spin system evolving, the
channel the pulse will be applied on, possibly even dynamical and exchange parameters. By joining
a spin system with a CHIRP pulse waveform we can produce a composite pulse that can indeed
evolve the system under a CHIRP pulse. Here is some example GAMMA code:

spin_system sys; // Declare a spin system
 sys.read(“filein.sys”); // Read in the spin system
 PulWaveform WF = WF_CHIRP95(4200); // Set up a CHIRP-95 waveform

PulComposite PC(WF, sys, “13C”); // Composite pulse on 13C channel

We could easily use repeated CHIRP composite pulses to evolve during a t1 evolution or during an
acquisition. But, as is typical in using such decoupling sequences, the base waveform is phase cy-
cled when repeatedly applied. In fact, CHIRP-95 is defined to be the base waveform cycled with a
5 step Tyko-Pines phase change and they supercycled in typical MLEV-16 fashion. Thus, if the
CHIRP waveform is broken up into 200 steps the full CHIRP-95 decoupling sequence will be
16,000 steps long per each cycle. To perform a simulated acquisiton during such a process demands
that the program is very careful in timing acquisition points relative to position in the cycle. In ad-
diton it is somewhat important to reutilize mathmatical entities which are repeatedly called for due
to the nature of the sequence’s symmetry. In GAMMA, these factors are automatically take
account with “higher” pulse classes: PulCycle and PulSupCycle.

-3

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

phase π– π[,]∋
Scott Smith March 16, 1998

GAMMA Pulse Waveform 54
Pulse Sequences Chapter Contents 3.2
Relationship Between Chirp, Chirp Cycle, and Chirp Supercycle

Figure 3-5 The relationship between the Chirp supercycle used for broadband decoupling and the
basic Chirp sequence. The Chirp cycle is that developed by Tyko and Pines and consists 5 Chirps
in succession with relative phase changes. The Chirp supercycle contains 16 of the Chirp 5-step
cycles, each of which has a relative phase of zero (R) or 180 (R with a bar). The supercycle is
MLEV-16 containing where the 5-step Chirp cycle is the primary unit. Thus there are 80 Chirp units
in 1 supercycle, and the supercycle is repeated during decoupling.

For clarity lets summarize. Any waveform can be declared in GAMMA (e.g. CHIRP). To apply a
pulse associated with the waveform one uses a composite pulse built from the waveform (or pro-
vided by a GAMMA function). If the pulse is to be repeated with a phase cycle one uses a pulse
cycle made from the composite pulse. If the pulse cycle is itself cycled then one uses a pulse su-
percycle which is made from the pulse cycle.

Chirp Pulse (Length tp)

0° 150° 60° 0°150°

R R R

Chirp Cycle (Length 5tp)

Chirp SuperCycle (Length 80tp)

_
R
_

R R R R
_

R R R
_

R
_

R R R
_

R

tp

_ _
Scott Smith March 16, 1998

GAMMA Pulse Waveform 55
Chapter Contents 3.2

March 16, 1998

** **
 **
ulation Example Program **

**
ARP sequence Waveform. I does no **
, it merely spits out plots so that **
nce can be readily viewed. **

**
f this program, then the following **
 step GARP-1 waveform which will **
s available. It will also make **
f the waveform. **

**
**
**

 **
**

98 **
**

***/

// Include GAMMA

rm Program 0\n”;
// Set GARP parameters
// Construct waveform
// Plot waveform(s), gnuplot
// Plot waveform(s), Framemaker
// Keep screen nice
Scott Smith

3.9 Chapter Source Codes

GaussWF.cc
/* GaussWF.cc **
** **
** GAMMA Pulse Waveform Example Program **
** **
** This program uses the class PulWaveform and the Gaussian pulse **
** module to build a Gaussian pulse waveform. It doesn’t do anything **
** with the waveform but spit out a waveform plot to the screen using **
** Gnuplot and make a FrameMaker MIF file of the plot. The plot is **
** set for time vs rf-amplitude. **
** **
** Author: S.A. Smith **
** Date: 3/9/98 **
** Update: 3/9/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. You can modify this program as you see fit **
** for personal use, but you must leave the program intact **
** if you re-distribute it. **
** **
**/

#include <gamma.h>

main()
 {
 PulWaveform PW = WF_Gaussian(600, 0.01, 50);
 PW.GP(1, 5, 20);
 PW.FM(1, 5, 20);
 cout << “\n”;
 cout.flush();
 }

GarpWF0.cc
/* GarpWF0.cc *************************
**
** GAMMA GARP Sim
**
** This program examines the basic G
** NMR computations involving GARP
** the default GARP (GARP-1) seque
**
** Assuming a.out is the executable o
** command will generate a single 25
** be displayed on screen if Gnuplot i
** an editable FrameMaker MIF file o
**
** a.out
**
** Author: S.A. Smith
** Date: 2/27/98
** Copyright: S.A. Smith, February 19
**
**

#include <gamma.h>

main(int argc, char* argv[])
 {
 cout << “\n\n\t\t\tGAMMA GARP Wavefo
 GARP GP(500.0, “1H”);
 PulWaveform PWF = GP.WF_GARP1();
 PWF.GP(1, 1, 5);
 PWF.FM(1, 1, 5);
 cout << “\n\n”;
 }

	3 Pulse Waveform
	3.1 Overview
	Waveform in GAMMA Pulse Hierarchy
	1
	2.5
	0
	0.1
	2
	2.5
	90
	0.2
	3
	2.5
	0
	0.1
	Figure 3-1 A waveform (e.g. composite 180) is just a list of pulse steps, each step having a spec...
	3.2 Chapter Contents
	3.2.1 Pulse Waveform Functions

	Construction & Assignment
	Access Functions
	Auxiliary Functions
	Plotting Functions
	Input/Output Functions
	3.2.2 Pulse Waveform Sections
	3.2.3 Pulse Waveform Figures & Tables

	3.3 Construction & Assignment
	3.3.1 PulWaveform
	Usage:
	Description:
	1. PulWaveform() - Creates an “empty” NULL pulse waveform. Can be later filled by an assignment.
	2. PulWaveform(row_vector& wfsteps, row_vector& wftimes, const String& wfname, int wfrad=0) - Cre...
	3. PulWaveform(const PulWaveform& PWF) - Called with another pulse waveform quantity this functio...

	Return Value:
	Examples:
	See Also: =
	3.3.2 =

	Usage:
	Description:
	Return Value:
	Examples:
	See Also: PulWaveform

	3.4 Access Functions
	3.4.1 steps
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.4.2 name

	Usage:
	Description:
	Return Value:
	Example:
	3.4.3 values

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.4.4 lengths

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.4.5 value

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.4.6 phase

	Usage:
	Description:
	Return Value:
	3.4.7 strength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.4.8 length

	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	3.5 Auxiliary Functions
	3.5.1 maxlength
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.5.2 minlength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.5.3 gamB1const

	Usage:
	Description:
	Return Value:
	Example:
	See Also: phaseconst, timeconst
	3.5.4 phaseconst

	Usage:
	Description:
	Return Value:
	Example:
	See Also: timeconst, gamB1const
	3.5.5 timeconst

	Usage:
	Description:
	Return Value:
	Example:
	See Also: phaseconst, gamB1const
	3.5.6 WFs

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.5.7 fullWFs

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.5.8 fullsteps

	Usage:
	Description:
	Return Value:
	Example:
	3.5.9 sumlength

	Usage:
	Description:
	Return Value:
	Example:

	3.6 Plotting Functions
	3.6.1 GP
	Usage:
	Description:
	Return Value:
	Example:
	See Also: FM
	3.6.2 FM

	Usage:
	Description:
	Return Value:
	Example:
	See Also: GP

	3.7 Input/Output Functions
	3.7.1 printBase
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.7.2 printSteps

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.7.3 print

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	3.7.4 <<

	Usage:
	Description:
	Return Value:
	Example(s):
	See Also:

	3.8 Description
	3.8.1 Introduction
	3.8.2 Pulse Waveform Basis
	Gaussian Waveform
	Figure 3-2 A Gaussian waveform in GAMMA. Each step here has the same length and phase whereas the...

	Basic GARP 25 Step Sequence
	1
	30.5
	9
	134.5
	17
	258.4
	2
	55.2
	10
	256.1
	18
	64.9
	3
	257.8
	11
	66.4
	19
	70.9
	4
	268.3
	12
	45.9
	20
	77.2
	5
	69.3
	13
	25.5
	21
	98.2
	6
	62.2
	14
	72.7
	22
	133.6
	7
	85.0
	15
	119.5
	23
	255.9
	8
	91.8
	16
	138.2
	24
	65.6
	25
	53.4
	Figure 3-3 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with a...
	3.8.3 Pulse Waveform Construction
	3.8.4 Pulse Waveform Utility

	Typical Chirp Sequence Amplitude and Phase
	Figure 3-4 The rf amplitude and phase for a typical Chirp. The amplitide is kept constant at 4.2 ...

	Relationship Between Chirp, Chirp Cycle, and Chirp Supercycle
	Figure 3-5 The relationship between the Chirp supercycle used for broadband decoupling and the ba...

	3.9 Chapter Source Codes
	GaussWF.cc
	GarpWF0.cc

